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MULTI-STEP RUNGE-KUTTA METHODS

SUMMARY

The multi-step methods presented in this report differ from the classic,
single-step Runge-Kutta process by utilizing the numerical results of the
previous integrations. As developed here, the multi-step process avoids the
complex Taylor expansions of the functions involved and instead employs the
writer's previously developed method of quadratures.

INTRODUCTION

The classic Runge-Kutta method, which is a single-step process, has a
number of pleasing properties, but since it does not utilize previous numerical
results of the integration, its efficiency is impaired. This defect will be some-
what remedied here by developing a multi-step method that is quite analogous
to the single-step Runge-Kutta process. By utilizing the evaluations at pre-
ceding points of the function in the differential equation to be integrated, some
reduction in the number of evaluations required in the single-step process is
expected.

Perhaps the greatest obstacle in the development of a multi-step process
is the tedious--and formidable--task of making Taylor expansions of the func-
tions (those for both the current and preceding points) about the current point.
In a recent article [ 1], the writer has developed a "method of quadratures"
for obtaining the system of equations that determine the parameters of the
(single-step) classic Runge-Kutta process; this method obviates the need for
making the complex Taylor expansions. In this report we will show how the
method of quadratures can be extended to the multi-step process.

THE TWO-STEP FOURTH-ORDER SOLUTION

For simplicity, we will consider only the initial value problem

y' = I(X,y) y(Xg) = yo (1)



though the results may be extended to systems of differential equations. We
define the sequence of equations

k(9 = nf (%0, v0) o

kg(o) = hf (Xo+ ayh, yo + 321k1(0)> =)
0 0 °

k3( ) _ hf<x0+ a3 h, yo+ 3311{1( ) 4 ,3321(2( )> (2c)

where x4 and y, designate the current point.

X-l = Xg = h
Yy-1 = ¥(Xo-h) (3)
refer to the preceding point separated by the step-size h. If we replace x,, yg

in equation (2) by x_; and y_; (and make the appropriate changes in the super-
scripts on the k's), we get

(-1)

k = hf (x¢-h, y-y) e
-1 B

k2( ) = our (x0+ (ag=1)h, y_4 + 321k1( 1)) (40)
-1 - N

k3( ) = pr (Xo+ (az= 1)h, y-4+ Bsikl( )+ Pz kz( )> ()

In equations (2) and (4), and subsequently, the superscripts will distinguish
the current from the preceding point.

We will show that

1(O)ki(o) + CL)2(0)1{2(0) (O)k3(0)

y(Xeth)y=ys+ w + ws

(5)

- - _ _ (-1), (-1)

with appropriate values for the weights and the parameters in equations (2)
and (4), will give a solution of fourth-order accuracy at (xo+ h). Since

.
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the evaluations of the functions in equation (4) will already have been made, !
only the three evaluations in equation (2) will be required to find the solution
at the next point (x, + h). Because these evaluations are the most time-
consuming part of the computation and since the classic Runge-Kutta theory
required four evaluations for this order, 2 the advantage of this multi-step
method is evident.

Suppose now that equation (1) is reformulated as

X0+h
y(xo+ h) - y(xo) = fXO f(x, y(X)) dx (6)

in which form it includes the initial conditions. Now let us replace the right

member of equation (6) by the approximating quadrature sum

" [w1(0) f(xg, yo) + wz(o) f (x5, y1) +w3(0)f(x2, yo)
(7)
(

-1 -1 -1
oWy ) f(x-1, y-9) * wz( ) f(x-g, y-2) * w3( ) f(x-3, Y—3)}

where for convenience we have set

XI X0 + azh
X2 = Xg + azh (8)
and

X_1=X0—h

]
|
1

{

= X * (a3-1)h (9)

»
|
e
|

and where y; will be used for y (x;). We will now show how we may replace

each term in equation (7) by its corresponding term in equation (5).

1Except initially. Thus, in common with all multi-step methods, it is not
self-starting.

2This assumes that the errors in the two cases are comparable--which need not
be the case.



As we have shown in [1], in order for equation (7) to be a quadrature
approximation of equation (6) with fourth-order accuracy in h, the following

relations must hold:

XJ_l
x4,
]
-1 -1 -1 (0 0 0 z
h(w1( )wz( )ws( ).'wi( )wz( )ws( )) “Z(j—:i-- =y, j=0,1,2,3
X0 (10)
xi
%
where uj is given by
xgth jF1 jrl
_ oo - (Xeth)y"-xg _
u J. xax pre , §=0,1,2,3 (11)

0

The reason for showing the partitions in the matrices in equation (10) is evident.

If we substitute equations (8), (9), and (11) into equation (10) and
equate coefficients of like powers of h, we get the matrix equation that may

replace equation (10) 3
1 -1 1 -1

(0) (0) (0)

Wy "Wy "Wy

_ _ 1 (apf) (a2 (ap-1)°
<w1(—1)w2( 1)w3( 1) >

1 (ag-9) (o312 (ag-1)°

1 0 0 0
1 OZQ 0122 0123
1 oy 0’ g’
- 1 1 1
@ =5 5 ) (12)

3See reference [1] for more details about this operation.



These give some of the equations in the multi-step Runge-Kutta process.

Using the quadrature method, let us now examine the further conditions
by which equation (7) may be replaced by equation (5). If we compare analogous
terms in equations (5) and (7) we see that the differences are in the expressions
that replace y; in the functions f(x;, y;); the substitutions for y;, shown in

equations (2) and (4), substantially represent the unique aspect of the Runge-
Kutta process. These interchanges for the ¥y in f(xj, y;) might be permissible

if the terms in equation (7) are replaced by expressions of an acceptable order,
the order three in this case, not four, because of the factor h in both equations
(5) and (7). To attain this precision certain conditions, which will give other
Runge-Kutta equations, must be imposed.

Thus, the first term in equation (7) that will be affected by substituting
replacements lor Yy is [(x4, y1), which is to be replaced by

0
f<x0 + agh, yo 521k1( )> (13)
as may be seen from equation (2b). This may be done by making a quadratune
approximation for y, that replaces it with (y, + 321k1(0) ), as is shewn in

equation (13); to attain the requisite precision indicated previously, the
following conditions must hold [1]:

(hBy1) %" = ug( )

(hB1)xg = uy(ay)

(h By1)xo? = Uy(ary)

(hfy1) %o = uz(ay) (14)
where
. r+1 r+i
Xot ajrgh | (xg+ aj+th)” "= x
ur(ozi+1) = on x dx = P+ 1 (15)



Similarly, to replace f(x_,, y_5) in equation (7) by f(x_5,y-4 + 321k1(—1)),

as shown in equation (4b), with the necessary precision, we must also satisfy
the conditions

(hByg) (x9-h)? = Uy(ay)

(hB31) (%o -h)! = uy(ay)

(hBy1) (xg-h)2 = Wp(ay)

(hBgy) (x9 - h)3 = Tz(ay) (16)

where
r+1 r+1
_ Xg + (ai+1~1)rh [Xo+ (@, ~DH - (% - h)
U.(ajtq) = fxo -h x'dx = S
r=0,1,2,3 (17)

As may easily be seen , equations (16) and (17) can be obtained simply
by replacing x4 by (%o - h) in equations(14) and (15); this is to be expected
if we note that equation (4b) is obtained from equation (2b) by the same trans-
formation.

Similarly, we can replace f(x,, y5) and f(x_3, y-3) in equation (7) by

the functions shown in equations (2c) and (4c); this is accomplished by re-
placing y, and y_3 with appropriate quadratures.

0
The conditions for replacing y, by (y,+ 3311{1(0) + B32k2( )) , as

shown in equation (2c) and with the requisite degree of precision three, are
(hB31)xg’ + (hB32) %" = ug(ag)
(hB31)xo + (hB3r)xy = uy(ay)
(BB31) %> + (hB3y)x4s* = uy(as)
(hBs1) x¢® + (BB3p) x4’ = ug(ay) (18)

where ur( a3) is given by equation (15).



-1
Similarly, to replace y_s in f(x_3, y-3) by (y-1+ B31k1( ) Bsoks
as is indicated in equation (4c), with the required degree of precision,
we must satisfy

(hBsy) + (hB3p) = To(a3)
(hBs1) (x¢ - h) + (hB3y)xg = uy(ag)
(hB3y) (%9 - h)Z + (hB3)xe? = Wp(a3)

(hB31) (%9 - h)®+ (hB3y)xe® = Tz(a)

-1
( ))’

(19)

where Tir(oz3) is given by equation (17). As before, we can see that equation

(19) can be obtained from equation (18) by replacing x, with (x4 - h) -- and,
of course, x4y with xy -- with corresponding changes in the right members.

THE RUNGE-KUTTA MATRIX EQUATION

In [ 1] we have shown, for the classic single-step case, how the

conditions

we derived by using our quadrature method--in this present case the analogous
equations (14), (16), (18), and (19)--are used to give an applicable Runge-

Kutta matrix equation.

We will here reconstruct the general idea without too detailed a treat-
ment (see also Appendix A). Using the aforementioned equations, let us form

the following weighted expressions:

(-1) (-1)

wg ﬁj (o) * wg

(0)

ﬁj (a3) + w

uj (O{z) + (_1)3(0)uj (Ol3), j=0,1,2,

3 (20)

Let us first dispose of the case j=0. We must first note, by equations

(15) and (17), that
Uy (ai+1) = WUg (a1+1) = a1+1 h
so that the first equations in (14), (16), (18), and (19) are identically

satisfied if
Gy = By

ag = By *+ Bs



In general, the equations

t B, FL2 (N (21)

+ +
Uit T Pirg, 1 T Pra2 T
hold as they do in the single-step case.

Let us illustrate the result of using equation (20) when j=2. Using
equations (15) and (17) to replace the uj 's, we have

(%¢°h) {wz(—i)% + w?:(_i)as + wz(o)az + w:a(o)as.}
(2h?) lwz(_i)(‘az rdagt) v ) (arar?) ¢ oy (o)
+w3(0)(‘;"0‘32)} + (%) {‘*’2(—1) (5 o - a2+ ap)

+w3(_1)<%a33 - o + oz3) + wz(o) <§0123> +w3( 0) <éoz33>} (22)

The corresponding expression for (20) is as follows, ? if we replace
uy( @y) , uy( ag) and Uy( ) , Uy a5) by the left members of the equations ( 14) ,

(16), (18), and (19):
(x¢°h) {wz_laz + wylag + wla, + w3°a3}

- -1
+(2x0h2){ wz( 1)(—042) + w3( )(,83201 = 3)F CU:z(o) . 0 w?’(O) (B320z2)}

~1) O

-1
a, + w3( )(5320422 - 2Byt agz) + oW

+ (b (c«é

0
+owl) <Bgza22)} (23)

If now we equate powers of h in equations (22) and (23), we obtain the
two Runge-Kutta equations:

wz(_i)azz + w3(-1) (as? - 2B30y) + ‘*)2(0)0422 + w3(0) (0r3® = 2B3p019) = 0
(24)

dwe omit the h term since it contributes nothing new.

4



-1 -1 0
wz( ) (-0 + 3% + w3( ) (-ag® + 305 + 33052 - 6B3ya) - w(2 )0123
0
+ {? (3Bgpap? - ag?) = 0 (25)

No new results will be derived if we treat equation (20) similarly when
j=1, 3.

Without repeating in detail what has been developed in [ 1] for the single-~
step classic Runge-Kutta process, we will note that we can replace wi(o) in
- -1
i(O) o, and, similarly, w(i 1) by w(i )(ozi - 1). A repetition
of the previous analysis will yield another Runge-Kutta equation.

equation (20) by w

We will see that, as in the single-step process, if we can find other sets
of what we have called generalized Runge-Kutta weight coefficients to use in
equation (20) we should eventually be able to produce all of the relevant Runge-
Kutta equations. We will next show how we can get all of these coefficients

from the single-step process and avoid the basic, but tedious, work in the
illustration above.

We will anticipate the results we would obtain in the form of a matrix
equation: °

1, 21
-5 o -aj (5 ax-1)
(-1) (-1) (0) (0) 2 3
[OF) w3 w2 w3 1 R , 1 . \
Baa-75 o3 (Fnay- 3o -28 pay 4 @f)
(-1) (-1) (0) (0) o
wsy (ay-1) w3 (a3-1) wy oy w3 a3 P, L,
- Z (&3] —q oy
(-1) (0) 0 :
w3 B3 0 w3 Bm

1
(Bmai -5 ad)

™
8

R
ro

1
o

1
cona

(26)
where 0, the right member of equation (26), is the appropriate null matrix,

THE TWO-STEP FIFTH-OGRDER RUNGE-KUTTA EQUATIONS

The process for obtaining the generalized Runge-Kutta weight matrix,
even for the relatively simple two-step fourth-order case, becomes somewhat

’As we will see later only four of these equations are relevant. The solution
for the two-step fourth order is given in Appendix B,



involved when rigorously justified. We will now examine a procedure that is
an extension of the one-step process, and that can easily be extended to any
order, as is seen in [1]. Let us demonstrate this by developing the two-step
fifth-order Runge-Kutta matrix equation. With a slight modification of the
results derived in [ 1], we will first write out the one-step Runge-Kutta matrix
equation for the fifth order with five evaluations.

Let us define the matrices

Ws
W5y
ws a2
0
7))
(9)
= 0
. 7(’5)0‘5
1
o
wsc(si)
0 0
/0 (1) (2
and
XE e e®
Cgi) C3(2) 03(3)
C= C4(1) 04(2) 04(3)
ot i ol a5

6The exact number of evaluations is unimportant for our demonstration.

10



where

B O 0 0
(wsasn Wy wsasn) Byz Bz 0 0] = GZ(n)y?’(n)n(n)YS(n)>,
Bs2  Bss Ba 0
n =01 (29)
cz(j) = 0
() .
cg = Bpag
04(j) = 342042j + 343043j
Cs @ - 352a2j+ 5530‘3j + 5540‘4j ; ji=1,2,3 (30)

and where’

0
’)/2( ) (v;) = (w4Bgz * wsBs3) Bsg * (wsBsy) By * 75(0)352

(0)

0 0
Y:;( )(Vi)= 74( )343 + vs 7 Bs3

0 0
74( )(Vi)z 'Ys( ),354 = 0

0
Vs()(vi)= 0

The single-step fifth-order Runge-Kutta matrix equation with five
evaluations® is given by

(0, (0)

= 0 (31)

0
"The values for yj(o) (v;), (i = 2,3,4,5) may be derived from yj( ) (w,)
defined by equation (29), by replacing wi in the latter terms with the
corresponding yi(o) .

81t has been shown [ 2, 3] that the fifth order requires at least six evaluations
for a solution. Since we are using a two-step process, we would like to reduce
the number of evaluations by one.

11
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where 0 is the appropriate null matrix and where

1 1 3
Eaz 3 %2 %
1
-4-0!32 Yy g ia34
(0) A b
X = C - 1 o A s 1
o M 3 % L%
1 1 5 1 4

and C is given by equation (28). Combining the matrices in equation (32), we
get

[ 7o [ 5 ] - o]
[ﬁazaz 'é‘aaﬂ [ Baas” - %Q:is] [5320‘23 - io‘;‘] (33)
X(O)= [(342‘52 + Bgscg ’%0‘42] [ (Byaa® + Brzers?) - ‘;T af] [5420t23+ Bias® —i«y‘]

1 1
[(3520‘2 + Bssorg ¥ Beaty) “2"155] [(/3520‘22 + Byt + Buey) - T asa] [(352a23 + Begas® + 354%3)_%0[54

The two-step fifth-order Runge-Kutta process with five evaluations
will take the linear form

5 -1 -1 5 0 0
y(xg+ h)y =y, + 2 w.( ) k.( )+ 2 w.( ) k.( ) (34)
. i i . i i
i=1 i=1
where
(0 i-1 0
(O - hi'<‘<0+ o byt B Bk ’) (35)
i 1 . 1] ]
j=1
(-1 i-1 {
KD 2] ko (x -hyh, yo g kD (36)
1 1 J:1 1 ]

and where the superscripts (0) and (-1) refer to the current and preceding
points, respectively.

12



To accommodate the antecedent point, certain modifications will have
to be made in the two matrices in equation (31). In the case of the matrix

Q(O) , as we may see from equation (26), this is quite simple because, aside
from the appropriate superscript on w,, we must replace a, by (ozi -1). With

(-1)

these changes we will call the resulting matrix Q

The accompanying change in the matrix in equation (33) is not as simple,
and only the result will be given for the order of interest here.?® Thus, if we
write for the matrix in equation (33)

€1 €21 €31
€12 €22 €39
(0) _
€43 €23 €33
€14 Cu €y (37)

we should replace this by

€14 (eyy - 2eyqy) (e3q + 3eqy - 3eyy)
(-1)
X = e (ege - 2€yy) (e3p + 3eqp - 3eyy)
eq3 (eg3 - 2e43) (e33 + 3eq3 — 3ep3)
€14 (e9q — 2€44) (eg + 3eyy - 3ey, (38)

or:substituting the values for the elements from equation (33) and using the
superscript (-1) to distinguish it from the matrix for the current point, we
have

9This is developed in detail in Appendix A.

13



W

(-1)

Wy

w2

w3

ws

w3

(
2

b 3
( -Zaz‘ - —2—0122 + uz")

1
[(532023 - ;"‘3‘ + 38502

3
3t spant o

1
[-Eazﬂ + az’]

1
(Bszazz - 5‘%3 - Bnag + %2)

[(ﬁuuz + Bas3) -3 "‘tz] [(Buﬂzz + Buserf - ';"143)
1
-2(542‘1’2 +B6% ‘EO‘AZ)]

1
[(ﬁsz"z + B3ty + Bra) —g“sz]

(39)

whose elements are partially shown in equation (39),

We can now combine our results to give us the matrix equation for the
two-step fifth~order process. This can be written

|

]
Q('i): Q(O) )

I X (40)

where the partioned matrices shown are as previously defined and 0 is an
appropriate null matrix.

As an illustration, let us return to the two-step fourth-order equations
with three evaluations at each point, then the matrices in equation (40) become

gy
1(1@-1) ~of (4—&} - a2+5> \

- |
(et wg( l)(ari) | MZ(O)O(Z W(O)QS 1 . 2. 1,3 3 1,4 1,2
- -5 By~ S )+ 3(Byay-af
(-1} (-1) (0 (0) (sz“z 2“‘3) (Bazaz 3% [( 1% ( 2 )
(az—l) - (et 2 ; wz aza s O‘sz '5320’2*'(!32 —Sﬁzzo‘zz’-* crsJ
(—1)332 0 | w’(o)ﬁs2 0 ) 1 -
L2 (-- 3) Lo
(g (et 0 [ o Yege, 0 ( 3 a2> 3% 1%
- 0
! “ﬂaz(ari) 0 | wg( }1332013 0 . L1, i
(-1) ! (0 @zzaz-g “az> (ﬁszﬂ'z -g%) (532'12 —;a;«)
0 wy B3l ap-1) 1 0 wy  Bgpay
(41)
14



which give both the Runge-Kutta equations for the fourth-order method!? and
the fifth-order terms from which we may find the truncation error. ! If the

latter terms are ignored, equation (41) will adequately represent the required
equations.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Huntsville, Alabama, September 1, 1967
039-00-24-0000

10These are the equations in which the sum of the exponents in the product of
the a's and B's in any term is always less than the order of the process.

UThese equations, aside from some misprints, may be found in [4].

15



APPENDIX A

DERIVATION OF THE TWO-STEP FOURTH-ORDER EQUATIONS

The conditions we have derived using the quadrature methods for the

two-step fourth-order process are given by equations (14), (16), (18), and
(19). We will now display these equations in an expanded form in Table I and
show how we can obtain from these the Runge-Kutta equations.

In the first two groups of Table I are given the equations (14) and (18)
fori=0, 1, 2, 3, with the u (oy) and u (a3) terms in the right memberz

expanded by using equation (15). In the last two groups in Table I are the
expanded equations (16) and (19), where these are obtained from the first
two groups by replacing x4 by xo - h.

In Table II are shown the results of combining similar terms of the left
and right members of the equations in Table I. For convenience, in forming
equation (20) we have associated each group in these tables with a weight

-1
coefficient wi(o) or wi( ); and in Table I we have retained the origin of each
equation by the appropriate label u, (¢y) or u (as).

With the aid of Table II it is quite easy to form the expressions for
equation (20) and to derive the matrix equation (26).

It will be observed that by extending Table I the Runge-Kutta equations
for any higher order multi-step process may be obtained in a similar manner.

16
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TABLE I. THE CONDITIONS FOR THE TWO-STEP FOURTH-ORDER PROCESS
GIVEN BY EQUATIONS (14), (16), (18), AND (19).

hBy = hay,

1
(%eh)Bay = (Xoh) oy + E’hzazz

1
(xPh)Byr = (xPh) @y + (xoh?) @ + 5~ hiay®
3 1
('m)Bay = (xe') @y + (Gxo'hh) o+ (x)oy’ +hlagt
h(Bs1 +B32) = hog

it

1
Xoh(B3y +B3z) + h*(Bgauty) xghoy + hZas’
00 (B3 +By) + 2xoh®(Bapay) + B (Bypar?)

3
Xo'h(Bgy +Bga) + 3x0°h%(Baatry) + 3xoh®(Byya”) + h' (B3’ = x’hay + 5~

]

1
X02h053 + X0h2a32 + "3— h3(133

xhlag+ xghayd +i—h4a34

azh = azh

.
(ash) (xg-h) = (agh) (xo-h) + ';—hzazz .
(agh) (xg-h)2 = (aph) (xg-h)%+ (x¢h?) o’ - hlop® + — hloy’

3
(ah) (x9-h)% = azh(xg - h)?+ 5 hlay? (xg - 2xghth?) + hPa,® (x9-h) + i—h‘iaz‘i

ash = azh

(ash) (%9 - h) + h¥(Bgyay) = (hag) (xo-h) + é’hzaaz

(ash) (xp-h)2+ 2(xo - hyh¥(Bgay) + h¥(Byeen?) = (hag) (xg - h)h%ay? (xo - h) + _:13 hiay’
(ash) (xo - h)® + 3(xg - h)®h¥(Bypcry) + 3(xp - h)h¥(B3y @ ,H) + h'(B3y%) = (hay) (x¢- h)?

Ug (ay)
Wy (ay)
Uy (ay)

uz ()

ug(a3)
uy (@)
Uy (a3)

U3 (cg)

Uy( o)
U (ay)
Uy (ag)

Uz (ay)

g ( ag)
0y (as)
Uy(a3)

Uy(ag)
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ofD

A

TABLE II. THE RESULTS OF COMBINING SIMILAR TERMS OF THE
LEFT AND RIGHT MEMBERS OF THE EQUATIONS IN TABLE I,

0
h ¢ a?)
2 1
Xohz (—0(22) + h3 (—? O[%S)
3X02h2(“%'a22) + 3X0h3(- 3 Ol23) + h4 (—-3;-(124)

0

i
h2(332a2'—2‘0‘32)

1 3
2X0h2(B320‘2“;' ag?) + ¥ (Bga’ - 5 og’)
1 4 1
3x¢th? (B0 "'2'0532) + 3xoh®(Bge0? - T ag®) + bt (B30} '74'0534)
0
1
h2 (__ - o 22)

2
1 . i
xh? - 5 o) B (- Ty’ + o)

. 1 1 3
Bhi= 3 0 HF S (-5 0 + o) + bhedeyt - G ot + ag))

0
9 1 o
h* (B350, ~ 5% )

1
2xoh? (Bgptp-Lag?) + h¥ (Bypa? - =5 a3’ - 2Bpa,y + af)

i 1 3
3x°h? (Bgacty “150432) + 3xoh® (B3pay” - "3‘0433 -2Bg0y + agh) + hi(Bgay’- '4‘0‘34 * 3Bty - ag® - Bpay® +ogd)



APPENDIX B

SOLUTION OF THE TWO-STEP FOURTH-ORDER EQUATIONS

The solution of the Runge-Kutta equations for the two-step fourth-order
process will be indicated here, since the procedure can generally be followed
in the solution of other multi-step equations.

We must satisfy the four equations in (12) and, in addition, the four
applicable!? equations in (26), which are as follows:

€14 <w(2_1) + w20)> + e12<wg_1) + ng)) =0 (1-B)

eu[w(z_i) (042' 1>+ w(zo) az] toep [wa(—i) (0!3-1> + ng) aa] =0 (2-B)
(-1) (20) (0)

-1
w (ep1 - 2eqy) + C0(3 )(ezz - 2epy) tT wy eyt w3 ep=0 (3-B)

-1 0
€11 Bs2 (w(3 )+ wg )> =0 (4-B)
where eij is defined by equations (33) and (37).
From equations (4-B) and (1-B) we easily obtain

(-1)

Wy + w(zo) =0

R (5-B)

and if we combine these with the first equation in (12), we get also

wi™ 9 = g (6-B)

2These are the equations that contain only terms in which the sums of the
exponents in the products of the a's and 8's do not exceed three.

19



Using equation (5-B), both equations (2-B) and (3-B) can be reduced to

0 0 _
wy €4yt w3 ey =0

or
0 0 0
wg )(2,3320‘2) = wg )0122 + wg )0432 (7-B)

Equations (5-B) and (6-B) can now be used to simplify the remaining

three equations in (12), which become

- 1
- (1 L w(zo) + ng) = 5
0 0 5
w(z)a2+wg )oz3= E
1
A0 g2+ WDy = 3 (8-B)

This linear system in the weights can readily be solved:

*-(.()<1_1) = 6012013 - 5((12 +» Olé) '*:i
120!20[3
CU(QO) = Sag - 4 _ _w(z—i)

12a, (ag-ay)

0 -1
wg) = 4 - 5ay =—wg )
1205(ay - o) (9-B)
Using the last equation in (8-B), equation (7-B) reduces to
B — __1—
32 0
6w3( )oz2
so that equations (2-B) and (3-B) are also satisfied, provided
_ 203 (a3 - aj)
(10-B)

32 Qy (4 - 5ay)
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